Теплоизоляция является одним из важнейших элементов кровельного пирога.

В решении проблем энергосбережения, а также для повышениякомфортности помещений немаловажную роль играет утепление ограждающих конструкций зданий: наружных стен, перекрытий, покрытия и т.д. Применительно к существующим зданиям, проще снизить их энергопотребление за счет утепления крыши кровли при ремонте. Новые нормы значительно повысили требования к величине термического сопротивления покрытий и перекрытий, в соответствии с которыми, новое строительство, модернизация и капитальный ремонт зданий не могут осуществляться без применения эффективных теплоизоляционных материалов.

Применение тепловой изоляции при устройстве мастичных и рулонных кровель для плоских покрытий снаружи здания в какой-то мере позволяет снизить затраты на отопление помещений за счет снижения теплового потока вследствие увеличения термического сопротивления одного из ограждающих конструкций — покрытия. Кроме того, тепловая изоляция для плоских железобетонных покрытий:

  • защищает покрытие от воздействий переменных температур наружного воздуха;
  • выравнивает температурные колебания основного массива покрытия, благодаря чему исключается появление трещин, вследствие неравномерных температурных колебаний;
  • сдвигает точку росы во внешний теплоизоляционный слой, что исключает отсыревание бетонного или железобетонного массива покрытия;
  • формируется более благоприятный микроклимат помещения за счет повышения температуры внутренней поверхности покрытия (потолка) и уменьшения перепада температур внутреннего воздуха и поверхности потолка, в том числе и чердачных помещений.

Применение утепления для скатных крыш позволяет превратить чердачное помещение в жилое, что увеличивает полезную площадь жилья. А утепление кровли крыши из металлического профилированного листа предотвращает появление конденсата на его поверхности в холодное время года, что очень важно, например, для складских помещений.

Следует отметить, что физико-технические свойства используемых теплоизоляционных материалов оказывают определяющее влияние на теплотехническую эффективность и эксплуатационную надежность конструкций.

При выборе утеплителя следует учитывать, что на долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов, входящих в конструкцию ограждения, оказывают существенное влияние многие эксплуатационные факторы. Это, в первую очередь, знакопеременный (зима-лето) температурно-влажностный режим «работы» конструкции и возможность капиллярного и диффузионного увлажнения теплоизоляционного материала, а также воздействие ветровых, снеговых нагрузок, механические нагрузки от хождения людей, перемещения транспорта и механизмов по поверхности кровли производственных зданий.

Поскольку теплоизоляционные материалы, применяемые в строительстве, «работают» в достаточно жестких условиях, к ним предъявляются повышенные требования.

Прежде всего, обратите внимание на коэффициент теплопроводности l , Вт/(м . К) материала. Он должен быть таков, чтобы материал, в условиях эксплуатации, мог обеспечить требуемое сопротивление теплопередачи в конструкции, при минимально возможной толщине теплоизоляционного слоя. Следовательно, предпочтение надо отдавать высокоэффективным материалам.

Кроме того, теплоизоляционные материалы должны обладать морозостойкостью (не менее 20 — 25 циклов), чтобы сохранять свои свойства без существенного снижения прочностных и теплоизоляционных характеристик до капитального ремонта здания, а так же быть водостойкими, биостойкими, не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ.

Плотность материала, применяемого для утепления, должна быть не более 250 кг/м 3 , иначе существенно возрастают нагрузки на конструкции, что нужно учитывать, при выборе материалов для ремонта ветхих строений.

При монтаже теплоизоляции из сыпучих и рулонных материалов следует иметь в виду некоторые нюансы, позволяющие существенно упростить и ускорить работу с ними.

Характеристики теплоизоляционных материалов:

1) Средняя плотность — величина, равная отношению массы вещества ко всему занимаемому им объему. Средняя плотность измеряется в кг/м3.

Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объeм занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м3, в зависимости от их назначения.

Чем меньше средняя плотность материала, тем больше его пористость. От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределенными мелкими замкнутыми порами.

2. Теплопроводность — передача тепла внутри материала вследствие взаимодействия его структурных единиц (молекул, атомов, ионов и т.д.), и при соприкосновении твердых тел.

Количество теплоты, которое передается за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице, называется теплопроводностью (коэффициентом теплопроводности). Теплопроводность ( l ) измеряют в Вт/(м К). Методики и условия испытаний теплопроводности материалов в различных странах могут значительно отличаться, поэтому при сравнении теплопроводности различных материалов необходимо указывать при каких условиях, в частности температуре, проводились измерения.

Теплопроводность материалов возрастает с повышением температуры, однако, гораздо большее влияние в условиях эксплуатации оказывает влажность.

3. Влажность — содержание влаги в материале. С повышением влажности теплоизоляционных (и строительных) материалов резко повышается их теплопроводность.

Очень важной характеристикой теплоизоляционного материала, от которой зависит теплопроводность, является и сорбционная влажность, представляющая собой равновесную гигроскопическую влажность материала, при различной температуре и относительной влажности воздуха.

4. Водопоглощение — способность материала впитывать и удерживать в порах влагу при непосредственном соприкосновении с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое поглощает сухой материал при выдерживании в воде, отнесенным к массе сухого материала.

При выборе материала для конструкции рекомендуется обращать внимание на показатели, приведенные в ТУ, ГОСТ или рекламных проспектах (для материалов инофирм), и сравнивать их с требуемыми по условиям эксплуатации А и Б (приложения 3 СНиП II-3-79* ‘Строительная теплотехника’). Как правило, теплопроводность теплоизоляционных материалов в условиях А и Б процентов на 15 — 25 выше, чем указано в стандартах для сухих материалов при температуре 25 0 С.

5. Морозостойкость — способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ.

6. К механическим свойствам теплоизоляционных материалов относят прочность (на сжатие, изгиб, растяжение, сопротивление трещинообразованию).

Прочность — способность материалов сопротивляться разрушению под действием внешних сил, вызывающих деформации и внутренние напряжения в материале. Прочность теплоизоляционных материалов зависит от структуры, прочности его твердой составляющей (остова) и пористости. Жесткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами.

Прочность теплоизоляционных материалов, которые могут применяться для утепления скатных крыш, не нормируется, поскольку теплоизоляция укладывается в обрешетку и не несет нагрузки от кровли.

7. Теплоизоляционный материал для применения в покрытиях выбирается с учетом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении. Выбор теплоизоляционного материала в зависимости от типа кровельного покрытия определяется с учетом требований СНиП на кровли, пожарную безопасность и др.